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Generating new therapeutic hypotheses for human disease requires the

analysis and interpretation of many different experimental datasets.

Assembling a holistic picture of the current landscape of drug discovery

activity remains a challenge, however, because of the lack of integration

between biological, chemical and clinical resources. Although tools

designed to tackle the interpretation of individual data types are

abundant, systems that bring together multiple elements to directly enable

decision making within drug discovery programmes are rare. In this

article, we review the path that led to the development of a knowledge

system to tackle this problem within our organization and highlight the

influences of existing technologies on its development. Central to our

approach is the use of visualization to better convey the overall meaning of

an integrated set of data including disease association, druggability,

competitor intelligence, genomics and text mining. Organizing such data

along lines of therapeutic precedence creates clearly distinct ‘zones’ of

pharmaceutical opportunity, ranging from small-molecule repurposing to

biotherapeutic prospects and gene family exploitation. Mapping content

in this way also provides a visual alerting mechanism that evaluates new

evidence in the context of old, reducing information overload by filtering

redundant information. In addition, we argue the need for more tools in

this space and highlight the role that data standards, new technologies and

increased collaboration might have in achieving this aim.
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GLOSSARY

Biological rationale the scientific thought process and collective
evidence behind treating a gene product as a potential therapeutic
target on the basis of its connectivity to a disease or phenotype.
Druggable whether a protein might be a potential target because
it exhibits properties indicating that it might be amenable to
modulation by a small molecule or biological therapeutic.
Mash-up a single web application that integrates information or
functionality from more than one source.
Natural language processing (NLP) the development and
application of text-mining software for the ‘automated reading’ of
documents. The aim of NLP is to recognize human language
constructs so that key facts can be extracted and represented in
more formal ways.
Ontology a representation of concepts within an information
domain and the relationship between those concepts. Often,
ontologies are used to standardize descriptions of particular areas
of science with the aim of knowledge sharing and reuse.
Really Simple Syndication (RSS) formatted web feeds that are
used to rapidly publish information from frequently changing
information resources. Typically, users select feeds that are of
interest to them and read those feeds through desktop or mobile
software.
Semantic web a technical approach that uses the Resource
Description Framework (RDF) to describe, integrate and share data
both on the World Wide Web and within corporate enterprise
systems.
Web 2.0 the second generation of the World Wide Web, where
information is exchanged and presented in a two-way manner
(read and write) rather than one-way manner (read). The phrase is
commonly used in the context of collaboration. Examples of web
2.0 technologies include blogs and social networking sites.
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Visualization adding value
Technological advances in the past few decades have dramatically

increased our ability to generate primary data in the study of

human disease. While one laboratory generates a dataset to test

a particular hypothesis, the accumulation of multiple experimen-

tal results in online databanks can facilitate new knowledge dis-

covery by others [1,2]. Yet there remain several challenges that

prevent these resources being fully exploited by drug discovery

scientists, particularly the size, complexity and poor integration of

the data [3]. Visual interfaces are a crucial element in tackling this

problem by enabling data exploration and engaging the human

ability to synthesize complex visual inputs into meaningful under-

standing [4]. Here, we review the development and benefits of a

visual environment designed to aid the discovery of drug target

opportunities through the integration of disparate genomic and

chemogenomic data. Although several innovative visualization

approaches already exist in this area, the majority consider only a

limited range of the data and do not provide a broad coverage of

this extensive landscape. Nevertheless, these systems provide

important insight into how key design elements can be used to

increase the utility or usability of the software, as illustrated by the

following examples.

Beyond predetermined content
The major genome viewers (University of California Santa Cruz, or

UCSC [5]; Ensembl [6]; and the Generic Genome Browser, or

GBrowse [7]) illustrate the benefits of systems designed to grow

in parallel with experimental science. Each of these platforms can
4 www.drugdiscoverytoday.com
be uniquely customized to a particular experiment by allowing

researchers to upload and view their own genome-based data in

custom ‘data tracks’. As a consequence, the systems convey much

more focused and contextually relevant information, while also

eliminating the need for complex data import and export steps.

Furthermore, the development of standard formats and protocols

for these data tracks promotes the creation of numerous tools and

extensions, increasing the longevity of the software. An excellent

example of this is the Galaxy system [8], which provides a stream-

lined environment for the manipulation of large genomic datasets,

simplifying basic data manipulation operations and enabling

biologists to spend more time interpreting the data. With a few

simple operations, experimental results are visible as custom tracks

within the UCSC browser, providing a complete workflow for the

analysis of next-generation sequencing data. Without the fore-

sight of these custom tracks, this entire workflow would have been

much more complex and perhaps required the development of

additional software components duplicative of much of the gen-

ome browser functionality.

Expanding dimensions
The very nature of a biological system lends itself to representation

as a mathematical graph – nodes representing entities (genes,

proteins and drugs) and edges representing action or interaction.

To this end, a vast number of visualization programs for network

analysis have been developed, offering an extensive range of

features [9,10]. A common limitation of such software is the

rapidly diminishing ability to visually decode the network as

the number of nodes and edges increases. To combat this, tools

such as ProViz [11] and FORG3D [12] provide pseudo-three-dimen-

sional network views that generate separation between entities by

increasing the apparent visual area. The 3D-SE system [13] extends

this further by mapping relationships across an interactive virtual

sphere, enabling users to explore many more connections than a

two-dimensional view. However, three-dimensional displays

might not always succeed in making the information clearer,

particularly in situations in which there are multiple diverse

aspects to the data. This led the designers of Arena3D [14] to

propose an alternative methodology that separates multi-factorial

datasets into distinct two-dimensional subgraphs. Different types

of information, such as protein–protein interactions, protein–dis-

ease connections and protein–structural domain relationships, are

drawn on their own layers that are subsequently stacked upon

each other within three-dimensional space. In this way, Arena3D

achieves the main aim of related systems (the greater use of spatial

organization) while retaining the benefits of two-dimensional

representation (clarity in specific relation types). Finally, any

consideration of three-dimensional space within biology cannot

ignore that much of the data is generated from the context of

living cells and tissues. One of the most prominent tools here is the

Allen Brain Atlas [15], which provides an unprecedented view of

gene expression information by placing the data within an accu-

rate representation of brain physiology. However, a system also

worthy of note is Illoura [16], which combines novel visualization

with the use of established standards for data exchange between

biological resources. Through this mechanism, Illoura was used to

probe insulin granule distribution patterns in pancreatic beta

cells by combining a three-dimensional cell model with protein
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subcellular localization patterns drawn dynamically from an

online database.

Information maps
Cartographic techniques have also shown great value in represent-

ing large, multi-factorial datasets such as gene expression arrays

and other life science data. The ‘springScape’ approach [17] follows

this philosophy, representing the entire Gene Ontology [18] (see

Glossary) as a series of distributed points across a landscape. These

are subsequently interconnected by software ‘springs’, the tension

of which increases the more two entities are related, drawing

similar functions closer within the network. Intensities from gene

expression analyses can be overlaid and rendered as coloured peaks

rising from the surface map to directly indicate functional changes

in the data. In the case of the Caenorhabditis elegans transcriptome,

an analogous surface map was constructed by clustering genes

based on co-expression patterns across more than 500 microarray

experiments [19]. Surface peaks or ‘gene mountains’ were shown

to represent high-density regions rich in genes with similar func-

tions, aiding the classification of this genome. The authors of

GeneTerrain [20] used protein–protein interaction data to create

a surface map of signalling networks involved in Alzheimer’s

disease. As with previous examples, the overlay of disease-relevant

gene expression profiles onto this landscape created three-dimen-

sional contour projections that draw the eye to regions of interest.

Importantly, GeneTerrain demonstrates how a very different view

of protein interaction networks can provide a powerful way to

navigate large genomic datasets. Finally, sample classification

problems such as patient stratification can also be addressed

through this type of approach. FreeViz [21] plots individual sam-

ples as points on a two-dimensional surface, with the distance

between any two samples determined by their overall similarity.

The background of the visualization is organized into differently

coloured regions, each displayed as a gradient of colour intensity.

The region in which any sample point is located dictates its cluster

designation, and the underlying intensity provides confidence in

membership of that group, helping investigators to more readily

understand patient stratification.

Zooming in
An alternative mechanism for reducing visual overload is to view

data at multiple levels of resolution. Although a zooming function

is ubiquitous across modern software, genome browsers such as

X:Map [22] and Genome Projector [23] show how groundbreaking

technologies from other domains, such as Google Maps (http://

maps.google.com), can be employed within scientific analysis. The

benefit in this case is a greatly improved ability for dynamic

genome exploration, enabling users to pan across and probe

regions of interest through an intuitive and responsive interface.

It should be noted, however, that the ability to adjust the resolu-

tion within a particular view is distinct from the concept of

‘semantic zooming’ [24]. An example of this is the display of

different levels of granularity of cell signalling through the use

of ‘metagraphs’ – networks in which each node is itself a more

specialized regulatory circuit. Software such as VisANT [25] has

been specifically designed to facilitate this form of browsing,

enabling users to switch between views of high-level biological

connectivity and low-level processing. Ultimately, this type of
approach might enable navigation from tissue physiology,

through cell–cell communication and signalling pathways and

into genome-level events, connecting previously disjointed areas

of biological information. Although this is some distance away,

software such as BrainSnail [26] embodies this concept by enabling

knowledge capture and navigation within distinct ‘planes’ of

different information types, providing another angle on the con-

cept of filtering the view of biological data.

The human element
Although functionality and analytical power are primary factors in

choosing scientific software, good visualizations coupled with high

usability can deliver applications that actively engage research

scientists. For example, according to one survey (http://evolution.

genetics.washington.edu/phylip/software.html), there are a stag-

gering 437 different software options for phylogeny analysis. Yet

the compelling graphics of the Interactive Tree Of Life system [27] or

the innovative display of very large taxa implemented in Dendro-

scope [28], matched with their ease of use, present excellent starting

points for many users. The same could be said of tools such as Circos

[29], which redefines the presentation of complex tables and chro-

mosomal ideograms through an innovative circular representation.

Similarly, the Utopia system [30] enables common scientific tasks

(such as sequence analysis, reading literature and pathway naviga-

tion) through software that both provides a compelling user experi-

ence and adheres to a strong standard-based architecture. These

tools demonstrate how an empathy with the user community and

understandingof gaps and frustrations is important to help to create

applications that scientists want to – rather than have to – use.

Drug target hypotheses
Building biological rationale
Visualization approaches are employed across many facets of drug

discovery and play an important part in understanding of chemi-

cal space [31], high-throughput screening results [32], compound

toxicity [33], pharmacological relatedness [34], inter-disease rela-

tionships [35] and drug repurposing [36]. However, many of these

examples focus on a particular analysis or data type and form only

part of an overall picture of target-disease rationale. Scientists

wishing to gather a complete picture of the current therapeutic

landscape for an indication of interest are often forced to employ

ad hoc knowledge assembly processes. These are not only laborious

to perform and update but also make it difficult to share the

resulting output between different groups. A major factor driving

this situation is the wide range of disconnected sources required to

collate information around biological and chemogenomic ratio-

nale. For example, databases tracking clinical programmes form

the primary source of target–indication combinations that have

moved into the development phase [37,38]. Sources such as Prous

(http://www.prous.com), the Investigational Drugs Database

(http://www.iddb.com), Adis Insight (http://www.adisinsight.

com) and TrialTrove (http://www.citeline.com) provide large

amounts of information gathered from patents, conferences, web-

sites and other materials. Evidence of earlier stage programmes can

also be found in these databases and can serve as a useful indicator

of pharmaceutical interest, although many of these will be some

time away from clinical validation. For more novel targets, one can

draw upon data from genetic association studies and phenotype
www.drugdiscoverytoday.com 5
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observations from in vivo gene manipulation experiments. There

are a range of these sources, including the genome-wide associa-

tion database [39], the genetic association database [40], the

mouse knock-out database [41] and Online Mendelian Inheritance

in Man (http://www.ncbi.nlm.nih.gov/omim). The GeneRif [42]

system is also of use here, providing access to community-based

gene-centric annotation that includes highly accurate disease

connections [43]. These relationships can be supplemented with

further gene–disease associations derived from text-mining ana-

lyses across the biomedical literature. Commonly, co-occurrence

of terms for genes, diseases and phenotypes within text is per-

formed with subsequent ranking of these associations by simple

document counts (perhaps favouring co-occurrence in title or co-

occurrence in the same sentence) or statistical methods, such as t-

tests [44] and Z-scores [45]. Although co-occurrence suffers from

both false positives and false negatives, it remains a powerful

technique for the triage of existing knowledge [46,47]. In addition,

natural language processing-based analysis can be used to extract

more specific relationships from the literature by looking for

specific language constructs. Examples include searches for pat-

terns of interaction-type verbs (such as ‘activates’ or ‘inhibits’)

near to protein names, suggesting physical or at least functional

interactions [48].

In addition to direct gene–disease connections, resources such

as the Gene Ontology [18] can be used to identify genes involved

in biological processes of relevance to a disease. Although these

indirect connections might not always prove as meaningful as

their direct counterparts, they nevertheless provide an important

mechanism for identifying disease-relevant genes [47]. Finally,

gene–disease associations can also be inferred from high-through-

put genomic experiments, such as DNA microarrays. Often, these

can be derived from integrated meta-analyses across multiple

profiles within a given disease system, either from the literature

[49–51] or generated internally. It should also be noted that even

‘normal’ expression profiles, such as those held in systems such as

the GNF SymAtlas [52], provide important information regarding

genes expressed in a relevant tissue.

The chemogenomics element
In addition to disease biology, a further crucial judgement in any

target assessment is the likelihood of obtaining a safe, efficacious

therapeutic agent such as a small molecule or biotherapeutic (i.e.

‘druggability’). For small molecules, it is important to have access to

the full spectrum of any existing chemical matter and associated

data. If the target under study is the subject of clinical or later-stage

discovery activity, competitor intelligence databases described

above might provide key information. The competitor and clinical

trial-orientated databases are supplemented by resources that

contain detailed pharmacology information, such as MDDR

(http://www.symyx.com/products/databases/bioactivity), Wom-

bat (http://www.sunsetmolecular.com), GVKBIO (http://www.

gvkbio.com/informatics.html), BioPrint (http://www.cerep.fr),

PubChem (http://pubchem.ncbi.nlm.nih.gov), BindingDB [53]

and ChEMBL [54], as well as internal screening results and the

patent literature [55]. The physiochemical properties of compounds

found in these sources can help build a profile of the chemical space

and opportunities for further development and differentiation for a

particular target [56]. Consequently, the generation of a complete
6 www.drugdiscoverytoday.com
picture requires integration across as many of the public and com-

mercial resources as possible. Indeed, a recent analysis demon-

strated that despite considerable overlap, most systems contain

molecules not found in other databases [57]. Although it is reassur-

ing to know each of these is contributing some unique content, it

also illustrates the challenge facing any scientists wishing to gen-

erate a complete view of the chemogenomic landscape.

For those targets for which no synthetic small molecules exist,

estimates of the success of obtaining these can be generated

through a variety of means. A primary question is whether a

particular protein binds to an endogenous cellular small molecule

and whether such molecules are ‘drug like’ according to guides

such as Lipinski’s Rule of Five [58]. Key data sources that provide

this information are ChEBI [59], Human Metabolome Database

[60], KEGG [61] and Stitch [62], and again, each provides over-

lapping but unique data. Alternatively, where protein structure

information is available, this can also be used to identify potential

binding surfaces for drug molecules through binding pocket iden-

tification algorithms [63,64]. Finally, more speculative sequence-

based druggability predictions can be used to triage genome-scale

datasets to identify potentially novel targets [65,66]. Such algo-

rithms use statistical techniques to score entire proteomes accord-

ing to the presence of certain key features (e.g. transmembrane

helices, signal peptides and subcellular localization) that are

enriched in known drug targets and have been successfully applied

in several disease-relevant projects [67,68]. In addition, machine-

learning algorithms can identify hidden traits shared by successful

targets, which can then be applied across emerging target space to

predict potential chances of success [69].

In addition to druggability analysis, large-scale pharmacology

databases also provide the substrate for selectivity algorithms that

identify non-specific target–ligand interactions. For example, affi-

nity for the same small molecules can infer binding site similarities

between proteins with no obvious relationship at the primary

sequence level [70]. Alternatively, structural similarities between

the ligands of individual targets might identify those proteins

sharing similar areas of chemical space [71]. Because these types

of algorithms are amenable to routine, automated computation,

they represent a powerful way to exploit the data held in these

repositories to address key questions in early drug discovery.

The target information landscape
At Pfizer, we have developed an internal data warehouse that holds

data from many of the sources described above through integra-

tion via established strategies [3]. This includes more than 5

million data points from gene expression studies, more than 1

million gene–disease assertions mined from 22 million document

abstracts, 400,000 clinical and competitor intelligence summaries

and more than 500,000 active compounds and natural ligands.

Even with this infrastructure, we learnt that scientists wishing to

use this information to find drug target opportunities faced a

complex process of manual data navigation and assembly. Most

often, this was performed through custom, ad hoc database or web

queries and presented in the form of static Microsoft Excel data-

sheets. Crucially, scientists often added a layer of interpretation

across the data, ranking the evidence along practical drug discov-

ery perspectives to build confidence in any particular approach.

Although this analysis was performed by many different groups,

http://www.ncbi.nlm.nih.gov/omim
http://www.symyx.com/products/databases/bioactivity
http://www.sunsetmolecular.com/
http://www.gvkbio.com/informatics.html
http://www.gvkbio.com/informatics.html
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http://pubchem.ncbi.nlm.nih.gov/
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FIGURE 1

Data domains that contribute to the drug discovery landscape. (a) Ordered ranking of data categories that provide evidence connecting proteins to disease. (b)
Ordered ranking of categories of evidence supporting small-molecule druggability for proteins.
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the overall questions were similar, namely: Which targets are most

strongly connected to an indication or phenotype? Which are

mostly likely to be druggable (and do any chemical or biother-

apeutic starting points exist)? If a disease association is known,

how far has this idea previously been taken by others? Thus, it

became clear that what was needed was a mechanism to move this

type of analysis forward, moving the emphasis from data gathering

to interpretation and project decision making.

Rationale-based design
The use of scoring matrices to assess the rationale of potential

therapeutic approaches is a common practice within the discipline

and can be used to build a risk-balanced portfolio [72]. Different

programmes can be assessed on the level of confidence individual

pieces of evidence contribute to an overall likelihood that a project

will be successful. This highly decision-focused view of informa-

tion forms the basis for the design of our internal system. As Fig. 1
shows, the target opportunity landscape can be described as two

series of ordered components that define increasing disease asso-

ciation and target druggability. These two series can also become

the axes of a two-dimensional scatter plot representing increasing

biological and chemogenomic rationale for proteins as related to a

specific disease or phenotype. Within the plot, every human

protein is assessed against the evidence represented by each com-

ponent and then resolved as an individual point on this landscape,

as shown in Fig. 2a. Of course, many proteins are expected to have

evidence in multiple components along each axis, potentially

resulting in a dense and confusing graphic. To combat this, we

leverage the rank order of the data domains (Fig. 1) to simplify the

display. Specifically, although the evidence for a protein is assessed

within all of the components individually (and stored in an

underlying database), the protein is drawn only once, plotted

within the highest ranking x- and y-axis components for which

there is evidence. For example, the position of a drug target used in
www.drugdiscoverytoday.com 7
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FIGURE 2

Outline of the target landscape visualization. (a) Plots are constructed to represent a specific indication or phenotype, where linkage to disease and druggability is

represented by the x- and y-axes, respectively. Axes are divided into subcomponents aligned to the qualitative ranking described in Fig. 1 and ordered in such a
way as to provide increasing confidence towards the top right of the plot. A given protein (spot) is only shown on the plot in one location, appearing within the

8 www.drugdiscoverytoday.com
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current disease therapy would be within the clinical components

at the right of the chart, regardless of how the protein is scored

within other x-axis domains. Similarly, a protein for which there

are known chemical tools would be located towards the middle of

the y-axis, irrespective of the assessment of lower ranking

sequence-based druggability evidence. Thus, the view specifically

describes the degree to which each protein has progressed accord-

ing to drug discovery precedence. Once a protein is assigned to the

highest-ranking component, its exact position is fine-tuned with

respect to evidence levels through quantitative scoring, as out-

lined in Fig. 1. We should stress that in the majority of cases, these

calculations are either well described or generally obvious. Specific

examples include grading targets based on the Rule-of-Five proper-

ties of their associated compounds [58], grading text-mining

results on statistical scores [47] and grading targets in clinical

space based on stage-gate progression times.

Pharmaceutical zones
Although the scatter plot is specifically designed to provide a

simplified view of the available information, users could still be

daunted by the number of proteins associated with a disease.

Although standard zooming functions provide magnification to

and focus on particular regions, the overall design of the landscape

provides an additional mechanism to address this issue. As shown

in Fig. 2a, specific regions of the plot are mapped to particular

classes of drug discovery questions. For example, a disease team

looking to identify a complete list of clinically precedented small-

molecule targets would concentrate on region ‘F’ of the plot.

Alternatively, key biotherapeutic opportunities will be enriched

in region ‘E’ and/or ‘H’ (high disease rationale and low small-

molecule druggability), whereas novel chemistry opportunities lie

in region ‘D’ (potentially druggable but no clinical compounds).

This subdivision of the visualization into readily identifiable,

pharmaceutically distinct zones provides a highly contextual view

of the information. The more directed mining that this enables is

further illustrated by an application to compound repurposing, an

important route to maximizing return on internal investment

[73]. Region ‘C’ of the plot (Fig. 2a) is particularly important for

this because it represents proteins with known chemical matter

that are associated with the disease of interest but for which there

is no evidence of clinical programmes within the competitor

databases. This provides a potentially fruitful collection of drug-

gable proteins that might provide a rapid entry into an exploratory

drug discovery programme. Of course, many of these connections

will not provide such an outcome, but the aim of the system is to

enable more rapid discovery of these testable opportunities, redu-

cing the need to trawl multiple unconnected databases. The

simplicity with which users are able to perform this task now
highest ranking component (on each axis) for which evidence is available. The size
employs a scheme based on available research tools (mouse knock-outs, clones and

landscape. The total known and potential target landscape for a disease can be d

(owing to lack of disease-linking evidence) but testable hypotheses (owing to availab

but high false positives; (C) compound repurposing opportunities, in which there
chemistry opportunities, in which there is some evidence linking the protein to a d

small-molecule approaches might be difficult; (F) competitor activity based on info

activity, in which small-molecule data are not unavailable or using biotherapeutics ap

pair. A user can select annotations from a controlled hierarchy and view previous an
enabling the user to view all information that was used to place the target withi
enables routine cross-referencing of the entire company target

portfolio across all therapeutic divisions to rapidly identify

value-added opportunities.

Ultimately, our aim is to grade the large number of potential

opportunities according to the level of precedence suggested by the

available evidence. Importantly, this does not mean that a protein

towards the bottom left of the chart is any better or any worse a

choice of target than one towards the top right. Such decisions are

complex and are based on many scientific, business and human

factors [74]. Rather, by gathering and partitioning the information

in a more intuitive way, we hope to more rapidly generate subsets of

potential target opportunities for deeper scientific scrutiny. Cur-

rently, we compute co-ordinates for more than 3600 different

disease and phenotype landscapes, with monthly historical snap-

shots each represented by approximately 15 million data points.

The entire system can be refreshed in less than 5 hours, satisfying

the most demanding requirements for currency and responsiveness.

The system is currently in use across all Pfizer research sites, covering

an extensive range of disease and therapy areas.

Evolving functionality
Digging deeper
Development of the graphical interface to the landscape system was

based upon a continuous conversation between research scientists,

data analysts and informaticians. From the beginning, the tool was

used in real-world projects, which directly highlighted key bottle-

necks and limitations of the system. This not only allowed new

feature development to be driven by immediate scientific need but

also identified additional use cases that might not have been cap-

tured otherwise. Perhaps the most important feature request was the

need to access the underlying evidence behind any assertion to

understand exactly why a protein was located in a particular posi-

tion. This functionality is realised as a report view (Fig. 2b) that

provides full details of how the protein position is calculated, along

with hyperlinks to source databases and original data within every

axis component. A community annotation tool sits alongside the

detailed information (shown on the left of Fig. 2b), employing a

controlled hierarchical vocabulary to aid the capture of assessment

outcomes. These annotations include interpretation of the evi-

dence, highlighting contradictions or overall decisions as to the

suitability of a particular target. Importantly, this also enables

scientists from different therapeutic areas to identify situations of

mutual interest in a novel target, perhaps providing an additional

incentive to initiate exploratory analysis.

Customizable landscapes
For illustration purposes, we concentrate here on a generic set of

biological and chemogenomic components. However, from the
of each spot can be set by the user based on additional data: the plot above
crystal structures). The positions for all human proteins are computed for the

ivided into business-relevant areas, for example: (A) high-risk opportunities

le chemical tools); (B) some novel chemistry or biotherapeutics opportunities

is evidence for disease linkage and available chemical matter; (D) novel
isease but few chemical tools; (E) opportunities for biotherapeutics, in which

rmation that has been disclosed by companies; and (G) and (H) competitor

proach. (b) The target summary and annotation view for a target and disease

notations. Links are provided to source databases and other online resources,
n the landscape.

www.drugdiscoverytoday.com 9



REVIEWS Drug Discovery Today � Volume 15, Numbers 1/2 � January 2010

R
eview

s
�K

E
Y
N
O
T
E
R
E
V
IE
W

beginning, the system was designed to accommodate custom charts

that omit certain elements or include new data sources, such as

disease-specific databases. Even on the generic chart, there are

several different algorithms that can be applied to rank proteins

within a data component, which, again, can be customized as

required by project teams. In addition, alternatives to small-mole-

cule druggability, such as small interfering RNA (siRNA) [75] and

monoclonal antibody [76] approaches, can also be assessed on the y-

axis. Thus, the tool not only supports common questions but also

can be tailored to the needs of individual disease research groups. All

of the data within the system are also accessible via web services,

enabling more computationally orientated scientists to incorporate

the data into custom workflows and data pipelining tools [77].

Regardless of the landscape design, one of the most important

features is the ability to limit the landscape to display only a

specific subset of proteins through data filtering, providing exten-

sive customization capabilities. We prebuilt several lists of proteins

sourced from a range of public and commercial repositories that

could be used to highlight, remove or specifically show matching
FIGURE 3

Exploring the target landscape in detail. (a) The heat map view, in which quantit
publication mentioning IKK2 causes the protein to jump across the NASH target lan

can follow links to the evidence responsible for the jump. (c) The interleukin-4 signa
Protein–protein interaction data used to filter the landscape scatter plot to identify c

which has been linked to psoriasis, has low predicted druggability. However, ID1 con
molecule opportunities.

10 www.drugdiscoverytoday.com
entities. Important filters include those listing relationships to

specific mouse knock-out phenotypes, Gene Ontology categories,

ligand-derived selectivity indices and internal portfolios. Combin-

ing filters through Boolean logic enables the creation of highly

focused subsets of the drug target landscape. An example is the use

of Protein Data Bank and Gene Ontology filters to show only those

proteins with solved crystal structures that also possess a particular

biological function. In addition to pre-computed filters, user-spe-

cific gene and protein lists can be created, optionally associated

with numerical values or scores. A common use for this function is

to enable the incorporation of new experimental data, such as that

from proteomic, microarray or siRNA experiments. The results are

visualized using heat map style display (Fig. 3a), providing a

mechanism to rapidly assimilate new results in the context of

the existing information.

Assessing all the evidence
The summarization scheme initially masks data in lower ranking

zones to represent a protein as a single point and simplify the
ative data such as gene expression results can be incorporated. (b) A new
dscape, triggering an RSS alert about this event, shown in the inset. The user

lling pathway is shown in the context of the target landscape for psoriasis. (d)
hemically tractable proteins not obviously linked to a disease. The protein ID1,

nects to other proteins, such as ALK-1, whichmight provide alternative small-
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BOX 1

Applications of the drug target landscape

Rapid lookup of information

A simple mechanism to determine drug discovery precedence.
Useful for new team members or for researchers looking at the role
of a target across a range of diseases.

Targeting a protein family
Strong project enablers such as crystal structures, practical
experience and available assays might lead to a protein family
being favoured within a company. By computing landscapes for
more than 1000 diseases, scientists are able to cross-reference each
member of the family to all diseases of interest to the organization
and, thus, maximize the effort.

Targeting a signalling pathway
Often, drug discovery programmes will investigate opportunities
across a signalling pathway involved in disease. Scientists can view
where each pathway member lies within the landscape, identifying
both precedented and novel opportunities.
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presentation to the user. While all of the data are available through

the summary view (Fig. 2b) on a per-target basis, users might also

wish to use this information in triaging the full landscape. This can

be achieved using the filter mechanism to display the scores

calculated for any data component as a heat map across the

proteome. For example, the values for the gene expression com-

ponent can be used to highlight all proteins that exhibit this

evidence, regardless of overall position. Alternatively, evidence

from the druggability predictions might be applied; this can be

useful to represent the likelihood of new chemical material even

where some small molecules already exist. As with all filters, the

process can be repeated for other domain scores, either individu-

ally or through Boolean combination. In this way, the system

retains the power of the summary view while providing a mechan-

ism to ensure decision making is made in light of all the available

evidence and not just that in the highest component.

An ever-changing landscape
One of the most crucial features to be identified was the need to

provide an alerting mechanism to highlight changes to the land-

scape caused by new data. By storing bi-weekly snapshots of the

evidence, it is possible to compare current and historical evidence

for any protein and alert users to any newfindings. Furthermore, the

inherent design of the system allows for a more tailored alerting

process that only triggers on potentially interesting increases in the

disease rationale of potential targets. To achieve this, we set a

customizable limit on the degree of movement required by a protein

either within or across components to register a change. This

enables scientists to keep abreast of major events without the need

to scan large numbers of new publications and databases. For

example, before 2008, the IkappaB kinase 2 (IKK2) protein would

be found in the low-confidence text-mining domain of the non-

alcoholic steatohepatitis (NASH) disease landscape as a result of an

article describing limited connectivity between the gene anddisease

[78]. However, after the publication of a paper demonstrating that

IKK2 inhibition directly blocks NASH initiation [79], the protein

moved across the target landscape towards the far right of the high-

confidence text-mining component because of this much stronger

evidence. A user with a registered interest in NASH would receive an

alert through a Really Simple Syndication (RSS) news feed (Fig. 3b).

This follows the same visual theme as the landscape itself, designed

to promote rapid interpretation of the impact of the new informa-

tion. Thus, landscape-based alerting differs from other systems such

as keyword alerts by leveraging what is already known about a

protein–disease connection to filter out information that does

not alter the relationship. Alerts are provided in a directly applicable

context: for example, new disease-linkage information is provided

within the context of druggability, and vice versa. Of course, this

approach is not designed to replace more comprehensive monitor-

ing of information required for targets under active research. How-

ever, because it is simply not possible for a scientist to monitor the

entire proteome across multiple indications, the landscape alerting

system provides a mechanism by which major new developments

can be identified early.

Case studies
By developing the landscape system in situ with disease area

programmes, we identified a wide range of scenarios in which
the tool could be of use, which are summarized in Box 1. Below, we

highlight some of these use cases in more detail.

Pathways in context
Cellular signalling pathways provide a deeper understanding of

disease [80] and drive a more systems-orientated approach to

drug discovery [53–56]. Researchers have a wide choice of path-

way and protein–protein interaction systems such as Reactome

[81], the NCI-Nature Pathway Interaction Database [82], HPRD

[83] and many more (http://www.pathguide.org). However,

subsequent cross-referencing of these pathways against internal

portfolios, druggability information and clinical precedence

often requires multiple import or export and data translation

steps. Thus, the integration of this type of information with the

target landscape system represents an important step towards

addressing this. An exploration of the interleukin-4 (IL4) signal-

ling pathway and its involvement in psoriatic disease [84]

provides an illustrative case study. The IL4 canonical pathway

can be obtained from sources described above and used as

a ‘network filter’ to show only proteins involved in this

system and their connections (Fig. 3c). This representation

complements graph-based pathway diagrams using Cartesian

positioning to place each protein node within a pharmaceutical

context and highlights related nodes amenable to small-mole-

cule modulation.

Extending target networks
In addition to canonical pathways, one can also incorporate high-

throughput interaction data to identify additional druggable tar-

gets that interact with known disease-implicated proteins (Fig. 3d).

In this example, several proteins with linkage to psoriasis have

been used to seed an interaction network to identify binding or

regulatory partners with lower rationale (i.e. more novel) but with

higher druggability. One such protein, the DNA-binding protein

inhibitor 1 (ID1) is visible as being strongly linked to psoriasis [85]

but with limited expectation of being amenable to small-molecule
www.drugdiscoverytoday.com 11

http://www.pathguide.org/


REVIEWS Drug Discovery Today � Volume 15, Numbers 1/2 � January 2010

Augmenting a mechanism hypothesis
From a protein that is known to be involved in a disease,
researchers can use in-house and external protein–protein
interaction data to navigate to an alternative point of intervention.
This might be more promising in terms of chemical tractability or
previous experience with that pathway.

Early identification of new opportunities
Comparison of target landscape snapshots over time enables
detection of new information that has impact or new opportunities
requiring immediate evaluation. Because this greatly reduces the
amount of information presented, scientists can also sign up to
additional alerts on related phenotypes that they might not
otherwise be able to monitor.

Visualizing high-throughput ‘omics data
Filtering a target landscape with a list of genes from a high-
throughput experiment enables a scientist to rapidly determine
the level of precedence within the set. This could also include the
identification of enriched membership in diseases other than that
of immediate interest, suggesting possible connections in biology
and cross-group opportunity.

Compound and mechanism repurposing
Targets with good chemical matter but no record of having ever
been clinical targets for a specific disease of interest present rich
opportunities for drug repurposing. Alternatively, knowledge of the
existence of a chemical tool modulating a protein of interest might
accelerate basic research into a biological system.

Target portfolio reloading
A team-based target triage exercise can use the landscape as a
starting point, covering target space for any indication. Analysis
might involve multiple data filter exercises, subsetting the data
across important biological processes or related phenotypes. After
an initial high-level triage, a team can then work through an
iterative shortlisting process, leveraging the community annotation
tool to record decisions.

Visualizing internal portfolios
By connecting the system to the internal drug target portfolio,
scientists are able to view all targets of current interest to the
disease area, against the background of precedence. This can be
valuable when assessing the spread of risk across the portfolio.
Alternatively, one can take the active targets within one therapy
area and view them on a series of additional disease landscapes to
obtain a view of potential cross-group collaborative opportunities.

Competitor assessment
Filtering to targets that are the subject of an organization’s current
discovery portfolio enables rapid determination of mechanisms
that are under investigation by many companies and those that
present key competitive opportunities.
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modulation. Expansion with protein interaction data identifies

the more druggable Activin-receptor-like kinase 1 (ALK-1) as a

modulator of ID1 [86] with limited psoriasis rationale. However,

ALK-1 is a participant in the TGF-beta system [87], which is known

to participate in inflammatory skin disorders such as psoriasis [88]

and might provide an interesting area for further research. Clearly,

such correlations do not in themselves constitute robust evidence

that a particular approach will work in the clinic or pre-clinical

models. However, the integration of protein networks and drug

discovery landscapes provides a much-needed methodology for

systematic mining of available opportunities.
12 www.drugdiscoverytoday.com
Continuous feedback
The landscape approach fits within a continuous cycle of target

discovery and validation. A target triage exercise involving the

system often begins by defining biological processes relevant to

the disease and creating tailored charts through customized

literature and database searches. A team-based in silico exercise

is then performed, dividing the landscape into manageable

regions and team members reviewing the underlying evidence

for each protein. Results from previous analyses and newly

commissioned studies (including microarray, proteomics and

siRNA studies) are often included through the filtering mechan-

ism. Throughout this exercise, hundreds of human annotations

and decisions regarding protein–disease assessments are cap-

tured into the system, informing future cycles of the process.

At times, annotations are made to suggest alternative uses for a

gene or protein, such as a biological probe using siRNA study or

as a potential biomarker for early research, providing additional

aid to the programme. The dynamic nature of the target land-

scape system also enables continuous tracking of targets whose

underlying evidence might be insufficiently compelling yet

strong enough to maintain an active interest. Alerts can be

initiated to monitor all such possibilities and notify scientists

when there might be new evidence (say, the publication of a new

small-molecule chemical series) that might cause a re-evaluation

of that target. Finally, the annotation capabilities also capture

protein positions misplaced by the automated data gathering

and analysis made by the system. This helps to increase the

validity of the information to other team members and also

highlights data quality and integration issues, improving aspects

of the data processing steps.

Conclusions and future directions
The generation of hypotheses from large genomic and chemoge-

nomic datasets is the subject of much research, generating many

individual algorithms and web resources [89]. Yet as these mature,

there is a need to ensure they move beyond the realm of computa-

tional scientists and are accessible to a wider population of drug

discovery researchers. The target landscape represents such an

attempt, specifically designed to connect several important data-

bases to provide a more holistic picture of existing knowledge.

Clearly, this is not designed to provide deep analysis into specific

pathways or validate novel targets. Rather, the landscape system

fits with a portfolio of analysis software and complements more

quantitative experimentation and systems biology strategies.

Indeed, landscape-based searches often form the first stage of

target analysis, generating lists of proteins with known involve-

ment in a disease as input to more complex modelling. Conver-

sely, a large-scale genomic or pathway analysis might create a list

of proteins that the user wishes to assess rapidly for disease

novelty, as well as for connections with other disease areas under

investigation by the organization. Thus, we see the landscape as

one element of a multifaceted workflow, providing access to

information in a more integrated and context-orientated manner

than has previously been possible.

Although this retrospective has concentrated on the develop-

ment of one specific system, the experience has provided more

general insight into some of the considerations for future infor-

matics tools in this space. Below, we highlight three key areas.
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Data standards
One of the biggest challenges in creating a system such as the

target landscape is the difficult task of maintaining the currency

of the underlying data, which, in turn, distracts from more

important efforts to develop analytical aspects. A major contri-

butor to this problem is the lack of standards across resources.

This is a clear example in which the widespread adoption of core

standards across industry, academic and commercial content

providers would accelerate these efforts greatly. Of greatest need

is the establishment of controlled vocabularies and taxonomies

to describe common, core entities and processes within drug

discovery. Although some of these exist through key public

bodies, such as the Open Biomedical Ontologies Foundry [90],

important concepts around mechanism of action, pharmacolo-

gical data and screening assay terminologies (to name but a few)

do not. We believe both industry and data providers must move

away from ad hoc, individual and/or proprietary standards and

move to those that directly facilitate data integration across

resources. Success of such an initiative requires widespread adop-

tion of the standards, something that might only be possible if

they exist fully within the public domain and without usage

restriction. Clearly, the funding of both the initial construction

and the ongoing maintenance of these key assets will be a

challenge. However, in the long term, the cost savings associated

with the removal of laborious data transformation steps, as well

as the potential for accelerated scientific discovery, should more

than justify this effort.

Exploiting technology
In addition to data standards, it is also important to use electronic

data formats that best facilitate analysis and hypothesis genera-

tion. It is here that the semantic web (SW) [91] and its associated

descriptive language, known as Resource Description Framework

(RDF), hold much promise [92]. RDF has the potential to encode

information in a format amenable to interpretation by both

humans (via presentation software) and, crucially, computers.

The highly structured nature of RDF-encoded data facilitates the

development of automatic reasoning tools that can scan a net-

work of information to infer new causal linkages [93]. Yet the

realization of the value of SW technology within drug discovery

will not be through data integration or even through computa-

tional analysis but through the application of the integrated data

to solving real problems in human health. To accomplish this, we

must ensure that these tools are accessible to as many scientists as

possible, leveraging the combination of new technology and

human biological knowledge. Although visualization approaches

are crucial to accomplishing this, only a handful of practical

real-world examples currently exist (including Illoura [16]

and Utopia [30]). Thus, as the SW matures, the development of

better mechanisms to interrogate the resulting network of infor-

mation will be crucial to realizing the potential of the advances

made so far.

In addition to context-specific visualizations, we could also

see greater benefit from more generic approaches. In particular,

the concept of ‘mashing up’ different pieces of information from

unconnected sources is gaining popularity across the Internet.

Components of the so-called ‘Web 2.0’ generation of software

such as Dapper (http://open.dapper.net), Yahoo Pipes (http://
pipes.yahoo.com) and GreaseMonkey (http://www.greasespot.

net) have emerged as powerful tools for extracting, connecting

and manipulating web content for life sciences [94,95]. For

example, the inventors of iHOPerator showed how GreaseMon-

key can be used to dynamically augment protein function

information on the Information Hyperlinked over Proteins

(iHOP) website [95]. This represents a real paradigm shift in

the use of the web, enabling individuals to customize and

integrate content as they desire, no longer limited by the

designers of the original website. In conjunction, several generic,

high-quality data-charting applications have emerged on the

web, including ManyEyes (http://manyeyes.alphaworks.ibm.

com), Processing (http://processing.org), GapMinder (http://

www.gapminder.org) and Axiis (http://www.axiis.org/). These

enable users to rapidly transform numerical data held in data-

bases and spreadsheets into dynamic and interactive graphs. The

combination of these tools with mash-up technology and data

standards might lead to a future in which ideas such as the target

landscape can be created as ad hoc prototypes, providing timely

support for individual projects.

The role of collaboration
The current surge in data coupled with decreasing revenues and

increasing budget restraints creates a difficult environment for life

science informatics within industry. Whether developed in-house

or purchased from a commercial vendor, drug discovery software

and data carry costs that make assembling an optimal repertoire of

tools and content very challenging. At the same time, there is an

ever-increasing involvement of academic and non-profit organi-

zations in drug discovery efforts, driving an increased availability

of both practical drug discovery reagents [96] and pharmacological

data [54] within the public domain. This creates a unique oppor-

tunity for partnership across the drug discovery community to

develop the core resources required by all engaged in the disci-

pline. We have argued that much of this work could be considered

precompetitive and that the sharing of costs, dissemination of

learning and pooling of ideas benefits both commercial and non-

commercial organizations alike [97]. In addition, collaboration

and discussion between companies might enable industry to speak

with a common voice on key issues and could boost initiatives

such as the adoption of data standards. A more collaborative

approach might considerably aid the development of future

hypothesis generation and information visualization tools for

drug discovery within the public domain.

The rapidly decreasing cost of genomic technologies coupled

with a glimpse of the vast complexity of genetic regulation [98]

suggests a future in which the volume of data will dwarf those

currently available. Major developments in informatics capabil-

ities will be required in all areas, ranging from data storage and

transfer to analysis algorithms and data integration. We would

argue that an additional and essential development will be systems

that place these data into disease-relevant contexts and facilitate

interpretation and hypothesis generation by all members of the

drug discovery team.
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